“The fridge door is open”—Temporal Verification
of a Robotic Assistant’s Behaviours

Clare Dixon', Matt Webster!, Joe Saunders?,
Michael Fisher! and Kerstin Dautenhahn?

! Dept. of Computer Science, University of Liverpool, L69 3BX, UK
2 Adaptive Systems Research Group, University of Hertfordshire, AL10 9AB, UK

Abstract. Robotic assistants are being designed to help, or work with,
humans in a variety of situations from assistance within domestic situ-
ations, through medical care, to industrial settings. Whilst robots have
been used in industry for some time they are often limited in terms of
their range of movement or range of tasks. A new generation of robotic
assistants have more freedom to move, and are able to autonomously
make decisions and decide between alternatives. For people to adopt
such robots they will have to be shown to be both safe and trustworthy.
In this paper we focus on formal verification of a set of rules that have
been developed to control the Care-O-bot, a robotic assistant located in a
typical domestic environment. In particular, we apply model-checking, an
automated and exhaustive algorithmic technique, to check whether for-
mal temporal properties are satisfied on all the possible behaviours of the
system. We prove a number of properties relating to robot behaviours,
their priority and interruptibility, helping to support both safety and
trustworthiness of robot behaviours.

1 Introduction

Robot assistants are being developed to help, or work, closely with humans in
industrial, domestic and health care environments. In these environments the
robots will need to be able to act autonomously and make decisions to choose
between a range of activities and yet will need to operate close to, or in collabo-
ration with humans. We need to make sure that such robotic assistants are both
safe and trustworthy. Safety involves showing that the robot does nothing that
(unnecessarily) endangers the person. To this end the International Organiza-
tion for Standardization (ISO) TC184/SC2 Technical Committee has been work-
ing on ISO 13482, a standard relating to safety requirements for non-industrial
robots, i.e. non-medical personal care robots®. Trustworthiness involves social
issues beyond pure safety. It is not just a question of whether the robots are safe
but whether they are perceived to be safe, useful and reliable, and will not do
anything we would consider unpleasant, unfriendly, or dangerous.

In this paper we consider the application of formal verification to the Care-
O-bot® [10], an autonomous robotic assistant deployed in a domestic-type house

3 www.sis.se/popup/iso/isotc184sc2/index.asp

at the University of Hertfordshire. Low-level robot actions such as movement,
speech, light display, etc., are controlled by groups of high-level rules that to-
gether define particular behaviours; for example, a sequence of rules to let the
user know that the fridge door is open. We apply formal verification, in partic-
ular model-checking [2], to such behaviours within the Care-O-bot. In model-
checking, a mathematical model of all the possible executions of the system is
constructed (often a finite state transition system) and then all possible routes
through this model are checked against a required logical formula representing a
desired formal property of the system. Model-checking is different from running
robot test experiments as it can check that a property holds on all paths through
the input model. Robot experiments remain useful, allowing the observation of
what occurs on particular runs of the real system. Together, model-checking
the behaviours for the robot alongside real robot experiments within the robot
house gives us a stronger assurance that the robot behaves as desired and helps
convince users of its trustworthiness.

In preliminary work [18] we modelled the Care-O-bot behaviours using a
human-robot teamwork modelling language, known as Brahms [14], and applied
formal verification to the resulting Brahms models. Brahms is a multi-agent
modelling, simulation and development environment designed to model both
human and robotic activity using rational agents and has been used at NASA
for modelling astronaut-robot planetary exploration teams. As the Care-O-bot
behaviours have similarities with Brahms constructs, and as a tool [15] has been
developed to translate from Brahms models into the SPIN model-checker [5],
this route was adopted as a preliminary, quick and systematic way to model-
check Care-O-bot behaviours. Issues with the approach involve the necessity to
first produce a Brahms model, the resulting models being unnecessarily large
due to the need to translate aspects of Brahms unnecessary to the Care-O-bot
rules, the length of time for verification of simple properties, and issues relating
to the modelling of non-determinism. Additionally, as this was a preliminary
attempt at model-checking robot behaviours, features such as selecting between
alternative behaviours using inbuilt priorities and whether the behaviours could
be interrupted were not modelled.

In this paper we provide a translation (by hand) of the behaviours for the
Care-O-bot directly into input suitable for a particular model-checker. Whilst a
hand crafted translation is both time consuming and potentially error prone it
means that we have much greater control over the size of the models (and related
verification times) in terms of the level of abstraction taken. Additionally we can
allow much more non-determinism in the models (for example allowing the vari-
ables relating to sensor information such as “the television being on”, “the fridge
door being open”, “the doorbell ringing”, etc., to be set non-deterministically).
A longer term aim is to develop an automated, direct translation from sets of
Care-O-bot behaviours to one or more model-checkers and this “by-hand” trans-
lation gives us useful insight into how to achieve this.

This paper is organised as follows. In Section 2 we describe the Care-O-
bot robot assistant and its environment. In Section 3 we give more details about

temporal logic and model-checking and explain how the translation into input to
the model-checker has been carried out. In Section 4 we give results from formally
verifying several properties via the model-checker. In Section 5 we discuss related
work, while conclusions and future work are provided in Section 6.

2 The Robot House and the Care-O-bot

The University of Hertfordshire’s “robot house” is a typical suburban house
near Hatfield. While offering a realistic domestic environment along with typical
house furnishings, the robot house is also equipped with sensors which provide
information on the state of the house and its occupants, such as whether the
fridge door is open and whether someone is seated on the sofa [11, 3].

The robot house can be used to conduct Human-Robot Interaction experi-
ments in a setting that is more natural and realistic than a university laboratory
(e.g. [12,16]). One of the robots in the house is the (commercially available)
Care-O-bot robot manufactured by Fraunhofer IPA [10]. It has been specifically
developed as a mobile robotic assistant to support people in domestic environ-
ments, and is based on the concept of a robot butler. The Care-O-bot robot,
shown in Figure 3, has a manipulator arm incorporating a gripper with three
fingers, an articulated torso, stereo sensors serving as “eyes”, LED lights, a
graphical user interface, and a moveable tray. The robot’s sensors monitor its
current location, the state of the arm, torso, eyes and tray. The robot can “speak”
in that it can express text as audio output using a text-to-speech synthesising
module.

The robot’s software is based on the Robot Operating System (ROS)*. For
example, to navigate to any designated location within the house, the robot uses
the ROS navigation package in combination with its laser range-finders to per-
form self-localisation, map updating, path planning, and obstacle avoidance in
real-time while navigating along the planned route. High-level rules are sent to
the robot via the ROS script server mechanism and these are then interpreted
into low-level actions by the robot’s software. For example, high-level rules can
take the form “lower tray”, “move to sofa area of the living room”, “say ‘The
fridge door is open’ 7, etc. The Care-O-bot’s high-level decision making is de-
termined by a set of behaviours which are stored in a database. Behaviours (a
set of high level rules) take the form:

Precondition-Rules -> Action-Rules

where Precondition-Rules are a sequence of propositional statements that are
either true or false, linked by Boolean and and or operators. Action-Rules are
a sequence rules denoting the actions that the Care-O-bot will perform only if
the Precondition-Rules hold. The Precondition-Rules are implemented as a
set of SQL queries and the Actions-Rules are implemented through the ROS-
based cob_script_server package, which provides a simple interface to operate
Care-O-bot.

4 wiki.ros. org/care-o-bot

For example the rules for the behaviour S1-alertFridgeDoor are provided in
Fig. 1. Here, the rule numbers from the database are given, where rules 27 and 31

27 Fridge Freezer Is *0N* AND has been ON for more than 30 seconds
31 ::514:: GOAL-fridgeUserAlerted is false
32 Turn light on ::0::Care-o-Bot 3.2 to yellow
34 move ::0::Care-o-Bot 3.2 to ::2:: Living Room and wait for
completion
35 Turn light on ::0::Care-o-Bot 3.2 to white and wait for completion
36 ::0::Care-o-Bot 3.2 says ‘The fridge door is open!’ and wait for
completion
37 SET ::506::G0AL-gotoCharger TO false
38 SET ::507::G0AL-gotoTable TO false
39 BSET ::508::G0AL-gotoSofa TO false
40 ::0::Care-o-Bot 3.2 GUI, S1-Set-GoToKitchen, S1-Set-WaitHere
41 SET ::514::GOAL-fridgeUserAlerted TO true

Fig. 1. The Si-alertFridgeDoor rules

represent the precondition-rules, rules 32, 34-36, 40 provide the (descriptions of
the) action-rules while 37-39 and 41 initiate the setting of various flags. Rules 27
and 31 check whether the fridge door is open and GOAL-fridgeUserAlerted
is false. If these hold (and the preconditions for no other behaviour with a
higher priority hold) then this behaviour will be executed by setting the robot’s
lights to yellow, moving to the living room, setting the robot’s lights to white,
saying “The fridge door is open”, setting various goals to be false, provid-
ing the user several options via the Care-O-bot’s interface and finally setting
GOAL-fridgeUserAlerted to be true.

The Care-O-bot’s database is composed of multiple rules for determining a
variety of autonomous behaviours, including checking the front doorbell, telling
the person when the fridge door is open, and reminding them to take their med-
ication, etc. The robot house rule database used for this paper (which includes
a set of 31 default behaviours) can be obtained from the EU ACCOMPANY
projects Git repository®.

The robot can perform only one behaviour at a time. Each of the behaviours
is given a priority between 0 and 90. If the preconditions for more than one
behaviour hold at any moment then the behaviour with the highest priority is
executed. For example the behaviour S1-alertFridgeDoor has a priority of 60
and S1-gotoKitchen has a priority of 40 so if the preconditions to both were true
then the former would be executed. Priorities remain the same throughout the
execution. If more than one behaviour has equal priority, then they are loaded
in a random order and on execution whatever behaviour is first (in the set of
equal priorities) will be executed first. Additionally each behaviour is flagged as

® github.com/uh-adapsys/accompany

interruptible (1) or not (0). In general, behaviours execute to completion, i.e. all
the rules that are part of the behaviour are performed, even if the precondition
to another behaviour becomes true during its execution. However, behaviours
flagged as interruptible are terminated if the precondition of a higher priority
behaviour becomes true whilst it is executing. The priorities and interruptible
status (denoted Int) of behaviours are given in Table 1. Behaviours with both
priority status and interruptible status set to zero are omitted from this table
to save space (but are included in the model).

Name Priority Int Name Priority Int
S1-Med-5PM-Reset 90 0 S1l-gotoTable 40 1
checkBell 80 0 S1-kitchenAwaitCmd 40 1
unCheckBell 80 0 S1-sofaAwaitCmd 40 1
Sl-remindFridgeDoor 80 0 S1-tableAwaitCmd 40 1
answerDoorBell 70 0 S1-WaitHere 40 1
Sl-alertFridgeDoor 60 0 S1-ReturnHome 40 1
S1-Med-5PM 50 1 S1-continueWatchTV 35 1
S1-Med-5PM-Remind 50 1 S1-watchTV 30 1
S1-gotoKitchen 40 1 S1-sleep 10 1
S1-gotoSofa 40 1

Table 1. Priority Table for Behaviours

3 Modelling the Care-O-bot Behaviours

Model-checking [2] is a popular technique for formally verifying the temporal
properties of systems. Input to the model-checker is a model of all the paths
through a system and a logical formula (often termed a property) to be checked
on that model. A useful feature of model-checkers is that, if there are execution
paths of the system that do not satisfy the required temporal formula, then at
least one such “failing” path will be returned as a counter-example. If no such
counter-examples are produced then all paths through the system indeed satisfy
the prescribed temporal formula. Here we use the NuSMV [1] model-checker.
The logic we consider is propositional linear-time temporal logic (PTL),
where the underlying model of time is isomorphic to the Natural Numbers, N.
A model for PTL formulae can be characterised as a sequence of states of the
form: o = s¢, s1, S2, S3, . . . where each state, s;, is a set of proposition symbols,
representing those propositions which are satisfied in the i** moment in time.
In this paper we will only make use three of temporal operators: ‘O’ (in the
next moment in time), ‘>’ (sometime in the future), and [’ (always in the
future) in our temporal formulae. The notation (o,i) = A denotes the truth of
formula A in the model o at state index ¢ € N, and is recursively defined as

follows (where PROP is a set of propositional symbols).

(0,i) Ep iff p € s; where p € PROP
(o,)) EQAiff(o,i+1)EA

(0,i) |2 QA iff 3k € N. (k> i) and (0,k) F A
(0,i) E JAiffVEeN. (k>14) and (0,k) E A

Note that [] and <} are duals, i.e. [J¢ = ~{>—¢p. The semantics of Boolean
operators is as usual.
First we identify the variables to use in the NuSMV representation of the model.

Booleans from the Care-O-bot rules: many of the Boolean values from the
system can be used directly, for example goals GOAL-fridgeUserAlerted,
or GOAL-gotoSofa

Robot actions: involving its location, the robot torso position, speech, light
colour, the orientation of the tray or providing alternatives on the Care-O-
bot display for the person to select between are modelled as enumerated
types for example location could have the values livingroom, tv, sofa,
table, kitchen, charging.

Scheduling behaviours: we use a variable schedule with an enumerated type
for each behaviour, e.g. if schedule = schedule_alert_fridge_door holds
this denotes that the preconditions to the Si1-alertFridgeDoor behaviour
have been satisfied and this behaviour has been selected to run having the
highest priority.

Executing Behaviours: we use a variable called execute with an enumer-
ated type for each behaviour involving more than one step eg execute
= execute_alert_fridge_door denotes that the S1-alertFridgeDoor be-
haviour is executing. An enumerated type execute_step with values step0,
stepl etc keeps track of which part of the behaviour has been completed.

Fig. 2 gives the schema showing the changes to variables in subsequent states
in the state transition diagram for the behaviour Si-alertFridgeDoor when
its precondition holds and this behaviour is scheduled. This corresponds with
the behaviour in Fig. 1. The first box shows the preconditions that must hold
(i.e. fridge freezer_ on and —goal fridge userAlerted) and that the be-
haviour must be scheduled (schedule = schedule_alert_fridge door) before
the other variables are set. This behaviour cannot be interrupted (see Fig. 1) so
once it is scheduled it will execute to completion. However other behaviours that
are interruptible (eg S1-gotoKitchen) may not complete all their steps if the
preconditions of another behaviour with a higher priority become true during
its execution.

When the previous behaviour has completed a new behaviour is scheduled.
To set the next value of schedule in the NuSMV input file, a list of cases are
enumerated as follows

condition; : scheduley

condition,, : schedule,,

fridge_freezer_on =true
goal_fridge_user_alerted = false
schedule = schedule_alert_fridge_door

i

light = yellow
execute = execute_alert_fridge_door
execute_step = stepl

l

location= livingroom
execute_step = step2

l

light = white
execute_step = step3

l

say = fridge_door_open
execute_step = step4

l

goal_goto_charger = false

goal_goto_table = false
goal_goto_sofa = false
execute_step = step5

/\

gui_choice = set_gotoKitchen gui_choice = set_waitHere
execute_step = step6 execute_step = step6

‘ goal_fridge_user_alerted = false ‘

Fig. 2. Schema showing changes to variables for S1-alertFridgeDoor behaviour

where condition; represents the preconditions to activate the behaviour and
schedule; is the behaviour selected to execute. The behaviours with higher pri-
orities appear above behaviours with lower priorities and NuSMV selects the first
case it encounters where the condition is satisfied.

We need to abstract away from some of the timing details included in the
database to obtain a model that is discrete, for example, involving delays or
timing constraints of 60 seconds or less. The behaviour Si-watchTV involves
checking a goal has been been false for 60 minutes. To achieve this we use
an enumerated type goal watch_tv_time with values for every 15 minutes m0,
m15, m30, m45, m60. We could increase the number of values to represent 5
minute intervals (or even less), for example, but this would increase the size of
the model.

4 Verification Using Model-Checking

Here we provide the properties that we checked and the outcome from running
these on NuSMV.

1. If the fridge door is open and goal_fridge user_alerted is false then at some-
time in the future the Care-O-bot will be in the living room and at some

time after that it will say the fridge door is open.

LI((fridge_freezer_on A —goal_fridge_user_alerted) =
$(location = livingroom A {say = fridge_door_open))

We expect this to be false as, even though the preconditions to the be-
haviour Si-alertFridgeDoor are satisfied, preconditions to a behaviour
with a higher priority, namely S1-answerDoorBell, might hold and the other
behaviour be executed instead of this.

. If the fridge door is open and goal_fridge_user_alerted is false and the
Sl-alertFridgeDoor behaviour has been scheduled then at sometime in
the future the Care-O-bot will be in the living room and at some time after
that it will say the fridge door is open.

LI((fridge-freezer_on A ~goal_fridge_user_alerted N
schedule = schedule_alert_fridge_door) =
$(location = livingroom A say = fridge_door_open))
We expect this to be true as the Si-alertFridgeDoor behaviour is not
interruptible so once it is scheduled it should execute to conclusion.
. If the person selects goto kitchen via the Care-O-bot GUI then at sometime
in the future its location will be in the kitchen.

[1(gui_choice = gui_set_gotoKitchen =
{location = kitchen)

We expect this to be false. Selecting gui_choice = gui_set_gotoKitchen sets
the goal goal_goto_kitchen to be TRUE which is the precondition to the
behaviour S1-goToKitchen. However the behaviour S1-goToKitchen may
not be scheduled as the preconditions to higher priority behaviours may
also be satisfied at the same time. Alternatively it may be scheduled but
interrupted before completion.

. If the person selects goto kitchen via the Care-O-bot GUI and this behaviour
is scheduled then at sometime in the future its location will be in the kitchen.

[1((gui-choice = gui_set_gotoKitchenA
{schedule = schedule_goto_kitchen) =
{(schedule = schedule_goto_kitchen A {location = kitchen))

We expect this to be false. By selecting gui_choice = gui_set_gotoKitchen
(as previously) the goal goal_goto_kitchen is set to be TRUE which is the
precondition to the behaviour S1-goToKitchen. Also, here the behaviour
S1-goToKitchen has been scheduled but it may be interrupted before com-
pletion.

. If the sofa is occupied, the TV is on and the goal to watch TV has been false
for at least 60 minutes, then at some time in the future the Care-O-bot will
be located at the sofa and some time after that it will say shall we watch
TV.

LI((sofa-occupied A tv_on A —~goal _watch_tv A goal_watch_tv_time = m60)
= {(location = sofa A say = shall we_watch_tv))

We expect this to be false. Similar to (1) and (3) although the preconditions
for behaviour S1-watchTV have been satisfied it may not be scheduled as the
preconditions to higher priority behaviours may also be satisfied at the same
time. Alternatively it may be scheduled but interrupted before completion
so that the robot may not have moved to the sofa or may not have said Shall
we watch TV (or both).

6. If the system attempts to execute a tray raise rule, at some point in the
future the physical tray is raised (physical_tray= raised) and later the
internal flag showing that tray is raised (tray = raised) holds.

[(execute_raise_tray =
O (physical tray = raised A Qtray = raised))

We expect this to be true as raiseTray cannot be interrupted.

7. The next property shows the interruption of the behaviour S1-gotoKitchen
by a higher priority behaviour S1-alertFridgeDoor. If the S1-gotoKitchen
behaviour is executing (and the Care-O-bot is not raising or lowering the tray
which is not interruptible) and the preconditions to Si-alertFridgeDoor
become true then in the next moment the behaviour S1-gotoKitchen will
not be executing.

L ((execute = execute_goto_kitchen A —move_trayA
fridge_freezer_on A\ —goal_fridge_user_alerted) =
O(—(execute = execute_goto_kitchen)))

We expect this to be true due to the priority and interruption settings.

The results from verifying the above properties are given in Fig. 4. The outputs
are produced by running NuSMV version 2.5.4 on a PC with a 3.0 GHz Intel Core
2 Duo E8400 processor, 4GB main memory, and 16GB virtual memory running
Scientific Linux release 6.4 (Carbon) with a 32-bit Linux kernel. The timings
below are carried out running NuSMV with the flags —coi (cone of influence) -dex
(disable generation of counterexamples) -dynamic (enable dynamic variable re-
ordering). The size of the model generated by NuSMV has 130,593 reachable states.

The properties (3) and (5) above correspond with properties (1) and (3) from
[18]. Note that we cannot prove any of the properties that were proved from [18].
One difference between the two models relates to the environment. In [18] a
person is explicitly modelled and is the only cause of non-determinism in the
model. The person can choose to do one of the following: “move to the kitchen”,
“move to the living room”, “watch television”, “send the robot to the kitchen”,
“send the robot to living room” or “do nothing”. The doorbell was assumed
not to ring. This means only one behaviour can be triggered at any one time,
significantly reducing non-determinism in the previous work. In the current paper
a person is not explicitly modelled, although this could be done, and sensors
such as the television being on, the doorbell ringing, etc., are allowed to be
arbitrarily set to be true or false at any point in the model so several behaviours
might be triggered at once. Additionally, in the current work, priorities and

Property Output Time (sec)
1 FALSE 11.1

2 TRUE 12.3
3 FALSE 7.7
4 FALSE 9.3
5 FALSE 11.6
6 TRUE 6.4
7 TRUE 6.9
Fig. 3. Care-O-bot in the Robot House Fig. 4. Model-checking Results

interruptions were modelled which were not considered in the previous work.
The properties from [18] could not be proved here because the preconditions for
higher priority behaviours might also hold and so be executed instead or they
might be interrupted by higher priority behaviours during execution.

The size of the model here (130,593 reachable states) is much smaller than
that in [18] (with 652,573 or more states). Additionally the verification times for
the four properties in [18] took between 20-30 seconds, longer than the properties
analysed in this paper. We believe this is because the direct hand-crafted trans-
lation we use here avoids the need for the translation of constructs required in
the Brahms modelling language whilst still retaining the meaning of the Care-O-
bot behaviours. Additionally, as mentioned previously here we have abstracted
away from some of the timing details such as “wait for 5 seconds”.

5 Related Work

This work applies model-checking to the behaviours of the Care-O-bot robot
located in the University of Hertfordshire’s robot house. Further details about
robot house, robot architecture and control systems and experiments with par-
ticipants in the robot house can be found, for example, in [3, 12,16, 11, 13]. This
paper builds on and extends the work described in [18]. As mentioned in Sec-
tion 4 we use a different environment model allowing more non-determinism,
model behaviour about priorities and interruptions and provide a direct trans-
lation into input to the NuSMV model-checker.

In [15] verification of a domestic home care scenario involving a person, a
human carer, a robotic assistant and a house agent is considered. The scenario
is modelled in Brahms and an automated translation from Brahms models into
the SPIN model-checker is provided. However, here the scenario we analyse re-
lates to real code used in practice in real life experiments in the University of
Hertfordshire’s robot house.

Other research using model-checking to verify aspects of robot behaviour in-
clude the verification of safety properties for a core of the Samsung Home Robot
(SHR) [6], the analysis of robot motion [4], and the application of model-checking
to the control system responsible for slowing down and stopping of a wheeled
off-road vehicle [9]. Other formal methods used for robot verification include
the application of quantified differential dynamic logic to prove physical loca-
tion properties for algorithms controlling a surgical robot [7], the use of hybrid
automata and statecharts to model and verify a multi-robot rescue scenario [8]
and the application of an interactive theorem prover to specify and verify robot
collision avoidance algorithms [17].

6 Conclusions and Future Work

We have modelled the behaviours of a robotic assistant in the model-checker
NuSMV and proved a number of properties relating to this. The size of mod-
els and verification times were less than in previous work [18]. The priorities
and interruptibility of the behaviours were modelled so that even if the sat-
isfaction of the preconditions of behaviours such as Si-alertFridgeDoor or
S1-gotoKitchen became true these behaviours might not be fully executed be-
cause of higher priority behaviours being scheduled instead. Many of the timing
details were removed from the models but more detailed timings could be in-
cluded at the expense of the size of models and verification times. The model of
a person in the robot house was not represented but this could be incorporated
showing their location for example. In future work we would like to provide
an automated translation from a database of rules into a number of different
model-checkers and we could experiment with larger databases of behaviours
and different model-checkers. Note that we believe that verification of this or
more complex systems should be targeted at an appropriate level of abstraction,
in particular (as here), the decision making level or high level control rather than
low level robot robot movement.

Returning to the issues of safety and trustworthiness, these verification re-
sults provide a route towards proving safety requirements and of using proofs to
convince users of trustworthiness. These results should be used as a compliment
to experiments with real people in the robot house relating to perceptions of
trust to give more confidence in robotic assistants.

Acknowledgments The authors were partially supported by EPSRC grants
EP/K006193 and EP/K006509.

References

1. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Proc. of Int. Conf. on Computer-Aided Verification (CAV) (2002)

10.

11.

12.

13.

14.

15.

16.

17.

18.

Clarke, E., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (2000)
Duque, I., Dautenhahn, K., Koay, K.L., Willcock, I., Christianson, B.: Knowledge-
driven User Activity Recognition for a Smart House. Development and Validation
of a Generic and Low-Cost, Resource-Efficient System. In: Proc. of the Sixth Int.
Conf. on Advances in Computer-Human Interactions (ACHI). pp. 141-146 (2013)
Fainekos, G., Kress-Gazit, H., Pappas, G.: Temporal Logic Motion Planning for
Mobile Robots. In: Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA). pp. 2020- 2025. IEEE Computer Society Press (2005)
Holzmann, G.J.: The Spin Model Checker: Primer and Reference Manual. Addison-
Wesley (2003)

Kim, M., Kang, K.C.: Formal construction and verification of home service robots:
A case study. In: Automated Technology for Verification and Analysis (ATVA).
LNCS, vol. 3707, pp. 429-443. Springer (2005)

Kouskoulas, Y., Renshaw, D., Platzer, A., Kazanzides, P.: Certifying the safe design
of a virtual fixture control algorithm for a surgical robot. In: Proc. of the 16th Int.
Conf. on Hybrid Systems: Computation and Control. pp. 263-272. ACM (2013)
Mohammed, A., Furbach, U., Stolzenburg, F.: Multi-Robot Systems: Modeling,
Specification, and Model Checking, chap. 11, pp. 241-265. InTechOpen (2010)
Proetzsch, M., Berns, K., Schuele, T., Schneider, K.: Formal Verification of Safety
Behaviours of the Outdoor Robot RAVON. In: Fourth Int. Conf. on Informatics in
Control, Automation and Robotics (ICINCO. pp. 157-164. INSTICC Press (2007)
Reiser, U., Connette, C.P., Fischer, J., Kubacki, J., Bubeck, A., Weisshardt, F., Ja-
cobs, T., Parlitz, C., Hagele, M., Verl, A.: Care—o—bot®3 - creating a product vision
for service robot applications by integrating design and technology. In: IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems(IROS). pp. 1992-1998 (2009)
Saunders, J., Burke, N., Koay, K.L., Dautenhahn, K.: A user friendly robot archi-
tecture for re-ablement and co-learning in a sensorised home. In: Assistive Tech-
nology: From Research to Practice (Proc. of AAATE). vol. 33, pp. 49-58 (2013)
Saunders, J., Salem, M., Dautenhahn, K.: Temporal issues in teaching robot be-
haviours in a knowledge-based sensorised home. In: Proc. 2nd International Work-
shop on Adaptive Robotic Ecologies (2013)

Saunders, J., Syrdal, D.S., Dautenhahn, K.: A template based user teaching system
for an assistive robot. In: Proceedings of 3rd International Symposium on New
Frontiers in Human Robot Interaction at AISB 2014 (2014)

Sierhuis, M., Clancey, W.J.: Modeling and simulating work practice: A method for
work systems design. IEEE Intelligent Systems 17(5), 3241 (2002)

Stocker, R., Dennis, L.A., Dixon, C., Fisher, M.: Verifying Brahms Human-Robot
Teamwork Models. In: Proc. European Conference on Logics in Artificial Intelli-
gence (JELIA). LNCS, vol. 7519, pp. 385-397. Springer (2012)

Syrdal, D.S., Dautenhahn, K., Koay, K.L., Walters, M.L., Ho, W.C.: Sharing
spaces, sharing lives—the impact of robot mobility on user perception of a home
companion robot. In: Proc. of 5th Int. Conf. on Social Robotics, (ICSR). pp. 321—
330 (2013)

Walter, D., Taubig, H., Liith, C.: Experiences in applying formal verification in
robotics. In: 29" Int. Conf. on Computer Safety, Reliability and Security (Safe-
Comp). LNCS, vol. 6351, pp. 347 360. Springer (2010)

Webster, M., Dixon, C., Fisher, M., Salem, M., Saunders, J., Koay, K.L., Daut-
enhahn, K.: Formal verification of an autonomous personal robotic assistant. In:
Proc. of Workshop on Formal Verification and Modeling in Human-Machine Sys-
tems (FVHMS). pp. 74-79. AAAT (2014)

